
Verification of AMBA based AXI 4 Slave
Interface

Krithi B1, Sudarshan Bhat2, Yogesh Panchaksharaiah3
1Final year M.Tech (VLSI Design & Embedded Systems) Student, Department of E&CE,

Mangalore Institute of Technology and Engineering, Mangalore, Karnataka, India

 2Associate Professor, Department of E&CE, Mangalore Institute of Technology and Engineering
Mangalore, Karnataka, India

3Technical Manager, Mindtree Ltd, Bangalore, Karnataka, India

Abstract— The increasing amount of logic that can be placed
onto a single silicon die is driving the development of highly
integrated SoC designs. An important feature for any of the
SoC is based on how they interconnect. AMBA protocols are
today the de facto standard for 32-bit embedded processors
because they are well documented and can be used without
royalties. The AMBA AXI 4 protocol supports high-
performance, high-frequency system designs. It is suitable for
high-bandwidth and low-latency designs and provides high-
frequency operation without using complex bridges. It
provides flexibility in the implementation of interconnect
architectures and is backward-compatible with existing AHB
and APB interfaces. This Project is aimed at the Verification
of the AMBA based Design of the AXI4 Slave Interface and
the Verification Environment is built using SystemVerilog
coding. This slave interface can be used to connect different
peripherals into AMBA based processors without using
bridge. The developed slave interface can also be used to
connect different peripherals like SPI, I2C, UART etc., into
non AMBA based processors by developing wrapper around
AXI4 slave interface.
Keywords— Advanced Microcontroller Bus Architecture
(AMBA), Advanced Peripheral Bus (APB), AMBA High-
performance Bus (AHB), Advanced Extensible Interface (AXI).

I. INTRODUCTION

The Advanced Extensible Interface (AXI) is a part of the
Advanced Microcontroller Bus Architecture (AMBA)
which is developed by ARM (Advanced RISC Machines)
company. It is an On-Chip communication protocol. The
AMBA AXI protocol supports high-performance, high-
frequency system designs.
The AXI protocol is suitable for high-bandwidth and low-
latency designs. It provides high-frequency operation
without using complex bridge. It meets the interface
requirements of a wide range of components. AXI protocol
provides flexibility in the implementation of interconnect
architectures. It is backward-compatible with existing AHB
and APB interfaces.
The key features of the AXI protocol are that it has separate
address/control and data phases & support for unaligned
data transfers, using byte strobes. It utilizes burst-based
transactions with only the start address issued. It has
separate read and write data channels that provide low-cost
Direct Memory Access (DMA). It supports for issuing
multiple outstanding addresses. It support for out-of-order
transaction completion. It permits easy addition of register
stages to provide timing closure.

II. LITERATURE REVIEW

The Advanced Microcontroller Bus Architecture (AMBA)
is an open-standard, on-chip interconnect specification for
the connection and management of functional blocks in
system-on-a-chip (SoC) designs. It facilitates development
of multi-processor designs with large numbers of
controllers and peripherals. Since its inception, the scope of
AMBA has, despite its name, gone far beyond micro
controller devices. Today, AMBA is widely used on a range
of ASIC and SoC parts including applications processors
used in modern portable mobile devices like smartphones.
AMBA was introduced by ARM in 1996. The first AMBA
buses were Advanced System Bus (ASB) and Advanced
Peripheral Bus (APB) [1&2]. In its second version, AMBA
2, ARM added AMBA High-performance Bus (AHB) that
is a single clock-edge protocol [3-5]. In 2003, ARM
introduced the third generation, AMBA 3 [6&7], including
AXI to reach even higher performance interconnect and the
Advanced Trace Bus (ATB) as part of the CoreSight on-
chip debug and trace solution. In 2010 the AMBA 4
specifications were introduced starting with AMBA 4
AXI4, then in 2011 extending system wide coherency with
AMBA 4 ACE with a re-designed high-speed transport
layer and features designed to reduce congestion [8-10].
Advanced microcontroller bus architecture (AMBA)
protocol family provides metric-driven verification of
protocol compliance, enabling comprehensive testing of
interface intellectual property (IP) blocks and system-on-
chip (SoC) designs. The AMBA advanced extensible
interface 4 (AXI4) update to AMBA AXI3 includes the
following: support for burst lengths up to 256 beats,
updated write response requirements, removal of locked
transactions and AXI4 also includes information on the
interoperability of components. AMBA AXI4 protocol
system supports 16 masters and 16 slaves interfacing. The
design is implemented using Verilog- HDL [11-13].

III. AXI PROTOCOL SPECIFICATIONS

A typical system consists of a number of master and slave
devices connected together through the Interconnect. The
AXI protocol provides a single interface definition, for the
interfaces:
• Between a master and the interconnect

Krithi B et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3135-3137

www.ijcsit.com 3135

• Between a slave and the interconnect
• Between a master and a slave.

Fig 3-1 AXI System Topology

The AXI protocol is burst-based and defines the following
independent transaction channels: Read Address Channel,
Read Data Channel, Write Address Channel, Write Data
Channel and the Write Response Channel.
An address channel carries control information that
describes the nature of the data to be transferred. The data is
transferred between master and slave using either:
A write data channel to transfer data from the master to the
slave. In a write transaction, the slave uses the write
response channel to signal the completion of the transfer to
the master.
A read data channel to transfer data from the slave to the
master.
The AXI protocol permits address information to be issued
ahead of the actual data transfer. It supports multiple
outstanding transactions. It also supports out-of-order
completion of transactions.

Fig 3-2 AXI Channel Architecture

IV. PROPOSED VERIFICATION ENVIRONMENT

The AXI Slave has been designed and verified using
Master-Verification IP. The design for slave has the five bi-
directional channels as the Input/ Output. The design is
done using the finite state machine approach. The
verification methodology adopted covers the principles like
Constrained-Random stimulus, Functional Coverage,
Common test bench for all tests. Test-specific code is kept

separate from test bench. Automation Scripts support
various switches so that we can re-use the test cases for
many different scenarios. The Verification Environment is
as shown in Fig 4-1.

Fig 4-1 Verification Environment

The basic components of the verification environment are
described below:
1. Testbench
Testbench mimics the environment in which the design
resides. It checks whether the RTL implementation meets
the design specification or not. This environment creates
invalid and unexpected as well as valid and expected
conditions to test the design.
2. Test Cases
Test cases are written for different scenarios, which cover
the functionality, corner cases. Basic read write
transactions, various burst modes are verified.
Parameterization will be randomized for different test cases
and are written to check all the possible scenarios. These
test cases are run in regression with multiple seeds.
3. DUT
The verification environment is organized in a hierarchical
layered structure which helps to maintain and reuse it with
the DUT.
4. Virtual Interface
Virtual interfaces provide a mechanism for separating
abstract models and test programs from the actual signals
that make up the design. It allows the same subprogram to
operate on different portions of design, and to dynamically
control the set of signals associated with the subprogram.
Instead of referring to the actual set of signals directly,
users are able to manipulate a set of virtual signals.
5. Scoreboard
The scoreboard collects write address and control
information on address channel, and data on write data
channel at the output of AXI slave and compares it with the
address, data and control information at the output of DUT.

Krithi B et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3135-3137

www.ijcsit.com 3136

It collects the responses at the DUT side and compares it
with that on the input side. Also, it collects read address and
control information on address channel at the AXI slave
input side and compares it with the address and control
information at the output of the DUT. It collects the read
response and data at the DUT side and compares it with that
on the input side.
The IP architecture for the AXI 4 Verification is shown in
Fig 4-2.

Fig 4-2 Verification IP Architecture

V. CONCLUSION AND FUTURE SCOPE

In this paper, an effective verification environment for
AXI bus is developed with SystemVerilog. The proposed
multi-layer testbench is comprised of AXI master, AXI
slave, assertions, scoreboard and coverage analysis. The
AXI 4 slave has been designed and verified using Directed-
Test bench methodology. Following the latest AXI
specifications, the designed Slave can easily be used to
connect different peripherals like SPI, I2C, UART etc., into
non AMBA based processors by developing wrapper
around AXI4 slave interface.

ACKNOWLEDGMENT

The authors wish to thank Mindtree Limited. This work
was supported by a grant from Mindtree Limited.

REFERENCES
[1] “AMBA Peripheral Bus Controller Data Sheet” Copyright © 1996

Advanced RISC Machines Ltd (ARM).
[2] Ramagundam, S.; Dept. of Computer Sci., Troy Univ., Montgomery,

AL, USA ; Das, S.R. ; Morton, S. ; Biswas, S.N. , “Design and
implementation of high-performance master/slave memory controller
with microcontroller bus architecture”, Instrumentation and
Measurement Technology Conference (I2MTC) Proceedings, 2014
IEEE International, 12-15 May 2014.

[3] “AMBA™ Specification (Rev 2.0)” 13th May 1999-A, First release,
Copyright ARM Limited 1999.

[4] “Soo-Yun Hwang; Dept. of Comput. Eng., ChungNam Nat. Univ.,
Taejon, South Korea; Kyoung-Sun Jhang “An improved
implementation method of AHB Bus Matrix”, SOC Conference,
2005. Proceedings. IEEE International, 25-28 Sept. 2005

[5] Hu Yueli; Key Lab. of Adv. Display & Syst. Application., Shanghai
Univ., Shanghai, China ; Yang Ben “Building an AMBA AHB
Compliant Memory Controller”, Measuring Technology and
Mechatronics Automation (ICMTMA), 2011 Third International
Conference, 6-7 Jan. 2011.

[6] “AMBA AXI Specification (AR500-DA-10008)” 16 June, 2003-A,
First release, Copyright ARM Limited 2003

[7] Paunikar, A.; Sch. of Electron. Eng., VIT Univ., Vellore, India ;
Gavankar, R.; Umarikar, N. ; Sivasankaran, K. , “Design and
implementation of area efficient, low power AMBA 3-APB Bridge
for SoC” , Green Computing Communication and Electrical
Engineering (ICGCCEE), 2014 International Conference, 6-8 March
2014

[8] “AMBA AXI 4 and ACE Protocol Specification” 28 October 2011 D
Non-Confidential First release of AMBA AXI 4 and ACE Protocol
Specification.

[9] Xu Yang ; Harbin Inst. of Technol., Harbin ; Zhang Qing-li ; Fu
Fang-fa ; Yu Ming-yan, “NISAR: An AXI compliant on-chip NI
architecture offering transaction reordering processing” ASIC, 2007.
ASICON '07. 7th International Conference, 22-25 Oct. 2007.

[10] Manjula, R.B. ; Manvi, S.S. ; Kaunds, P. “Data transactions on
system-on-chip bus using AXI4 protocol” Recent Advancements in
Electrical, Electronics and Control Engineering (ICONRAEeCE),
2011 International Conference, 15-17 Dec. 2011.

[11] “Verilog-A Language Reference Manual Analog Extensions to
Verilog HDL”, Version 1.0, Open Verilog International August 1,
1996

[12] “Verilog-AMS Language Reference Manual”, Release 2.3.1,
Accellera Systems Initiative , 06-2009

[13] “Verilog-AMS Language Reference Manual”. Release 2.4,
Accellera Systems Initiativ, 06-2014.

Krithi B et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3135-3137

www.ijcsit.com 3137

